clockCounter.v
`timescale 1ns / 1ps
module clock(
input clk,
input reset,
output [3:0] fndCom,
output [7:0] fndFont
);
wire w_clk_1s, w_clk_s;
wire [13:0] w_count_m_digit;
wire [5:0] w_clk_60s, w_clk_60m;
clkDiv #(.MAX_COUNT(100_000_000)) U_ClkDiv_1s (
.clk (clk),
.reset(reset),
.o_clk(w_clk_1s)
);
counter #(.MAX_COUNT(60)) U_Counter_s (
.clk (w_clk_1s),
.reset(reset),
.count(w_clk_60s),
.o_min_clk(w_clk_s)
);
counter #(.MAX_COUNT(60)) U_Counter_m (
.clk (w_clk_s),
.reset(reset),
.count(w_clk_60m)
);
fndController U_FndController(
.clk(clk),
.reset(reset),
.digit(w_clk_60s),
.digitm(w_clk_60m),
.fndFont(fndFont),
.fndCom(fndCom)
);
endmodule
fndController.v
`timescale 1ns / 1ps
module fndController (
input clk,
input reset,
input [13:0] digit,
input [13:0] digitm,
output [ 7:0] fndFont,
output [ 3:0] fndCom
);
wire [3:0] w_digit_1, w_digit_10, w_digit_100, w_digit_1000;
wire [3:0] w_digitm_1, w_digitm_10, w_digitm_100, w_digitm_1000;
wire [3:0] w_digit;
wire [1:0] w_count;
wire w_clk_1khz;
clkDiv #(.MAX_COUNT(100_000)) U_ClkDiv( // (100_000)이 없으면 default
.clk(clk),
.reset(reset),
.o_clk(w_clk_1khz)
);
counter #(.MAX_COUNT(4)) U_Counter_2bit(
.clk(w_clk_1khz),
.reset(reset),
.count(w_count),
.o_min_clk()
);
Decoder U_Decoder_2x4 (
.x(w_count),
.y(fndCom)
);
digitSplitter U_DigitSplitter (
.i_digit(digit),
.o_digit_1(w_digit_1),
.o_digit_10(w_digit_10),
.o_digit_100(w_digit_100),
.o_digit_1000(w_digit_1000)
);
digitSplitter U_DigitSplitter_m (
.i_digit(digitm),
.o_digit_1(w_digitm_1),
.o_digit_10(w_digitm_10),
.o_digit_100(w_digitm_100),
.o_digit_1000(w_digitm_1000)
);
Mux U_Mux (
.sel(w_count),
.x0 (w_digit_1),
.x1 (w_digit_10),
.x2 (w_digitm_1),
.x3 (w_digitm_10),
.y (w_digit)
);
BCDtoSEG U_BcdToSeg0 (
.bcd(w_digit),
.seg(fndFont)
);
endmodule
module Decoder (
input [1:0] x,
output reg [3:0] y
);
always @(x) begin
case (x)
2'h0: y = 4'b1110;
2'h1: y = 4'b1101;
2'h2: y = 4'b1011;
2'h3: y = 4'b0111;
default: y = 4'b1110;
endcase
end
endmodule
module digitSplitter (
input [13:0] i_digit,
output [ 3:0] o_digit_1,
output [ 3:0] o_digit_10,
output [ 3:0] o_digit_100,
output [ 3:0] o_digit_1000
);
assign o_digit_1 = i_digit % 10;
assign o_digit_10 = i_digit / 10 % 6;
assign o_digit_100 = i_digit / 60 % 10;
assign o_digit_1000 = i_digit / 600 % 6;
endmodule
module Mux (
input [1:0] sel,
input [3:0] x0,
input [3:0] x1,
input [3:0] x2,
input [3:0] x3,
output reg [3:0] y
);
always @(sel, x0, x1, x2, x3) begin
case (sel)
2'b00: y = x0;
2'b01: y = x1;
2'b10: y = x2;
2'b11: y = x3;
default: y = x0;
endcase
end
endmodule
module BCDtoSEG (
input [3:0] bcd,
output reg [7:0] seg
);
always @(bcd) begin // bcd 변화가 감지되면 실행
case (bcd)
4'h0: seg = 8'hc0;
4'h1: seg = 8'hf9;
4'h2: seg = 8'ha4;
4'h3: seg = 8'hb0;
4'h4: seg = 8'h99;
4'h5: seg = 8'h92;
4'h6: seg = 8'h82;
4'h7: seg = 8'hf8;
4'h8: seg = 8'h80;
4'h9: seg = 8'h90;
4'ha: seg = 8'h88;
4'hb: seg = 8'h83;
4'hc: seg = 8'hc6;
4'hd: seg = 8'ha1;
4'he: seg = 8'h86;
4'hf: seg = 8'h8e;
default: seg = 8'hff;
endcase
end
endmodule
module counter #(parameter MAX_COUNT = 4)(
input clk,
input reset,
output [$clog2(MAX_COUNT)-1:0] count,
output o_min_clk
);
reg [$clog2(MAX_COUNT)-1:0] counter = 0;
reg r_tick = 0;
assign count = counter; // wire은 assign으로 연결해야함.
assign o_min_clk = r_tick;
always @(posedge clk, posedge reset) begin // 비동기 reset
if (reset == 1'b1) begin
counter <= 0;
end
else begin
if (counter == MAX_COUNT - 1) begin
counter <= 0;
r_tick <= 1'b1;
end
else begin
counter <= counter + 1;
r_tick <= 1'b0;
end
end
end
endmodule
module clkDiv #(parameter MAX_COUNT = 100)(
input clk,
input reset,
output o_clk
);
reg [$clog2(MAX_COUNT)-1:0] counter = 0; // [16:0]으로 만들어줌. $clog2 : log2()
reg r_tick = 0 ;
assign o_clk = r_tick;
always @(posedge clk, posedge reset) begin
if (reset) begin
counter <= 0;
end
else begin
if (counter == (MAX_COUNT - 1)) begin
counter <= 0;
r_tick <= 1'b1;
end
else begin
counter <= counter + 1;
r_tick <= 1'b0;
end
end
end
endmodule
schematic
constraint
video
upCounter
upCounter_10k
`timescale 1ns / 1ps
module UpCounter_10k(
input clk,
input reset,
output[3:0] fndCom,
output[7:0] fndFont
);
wire w_clk_10hz;
wire [13:0] w_count_10k;
clkDiv #(.MAX_COUNT(10_000_000)) U_ClkDiv_10Hz(
.clk(clk),
.reset(reset),
.o_clk(w_clk_10hz)
);
counter #(.MAX_COUNT(10_000)) U_Counter_10k(
.clk(w_clk_10hz),
.reset(reset),
.count(w_count_10k)
);
fndController U_FndController(
.clk(clk),
.reset(reset),
.digit(w_count_10k),
.fndFont(fndFont),
.fndCom(fndCom)
);
endmodule
fndController.v
`timescale 1ns / 1ps
module fndController (
input clk,
input reset,
input [13:0] digit,
output [ 7:0] fndFont,
output [ 3:0] fndCom
);
wire [3:0] w_digit_1, w_digit_10, w_digit_100, w_digit_1000;
wire [3:0] w_digit;
wire [1:0] w_count;
wire w_clk_1khz;
clkDiv #(.MAX_COUNT(100_000)) U_ClkDiv( // (100_000)이 없으면 default
.clk(clk),
.reset(reset),
.o_clk(w_clk_1khz)
);
counter #(.MAX_COUNT(4)) U_Counter_2bit(
.clk(w_clk_1khz),
.reset(reset),
.count(w_count)
);
Decoder U_Decoder_2x4 (
.x(w_count),
.y(fndCom)
);
digitSplitter U_DigitSplitter (
.i_digit(digit),
.o_digit_1(w_digit_1),
.o_digit_10(w_digit_10),
.o_digit_100(w_digit_100),
.o_digit_1000(w_digit_1000)
);
Mux U_Mux (
.sel(w_count),
.x0 (w_digit_1),
.x1 (w_digit_10),
.x2 (w_digit_100),
.x3 (w_digit_1000),
.y (w_digit)
);
BCDtoSEG U_BcdToSeg0 (
.bcd(w_digit),
.seg(fndFont)
);
endmodule
module Decoder (
input [1:0] x,
output reg [3:0] y
);
always @(x) begin
case (x)
2'h0: y = 4'b1110;
2'h1: y = 4'b1101;
2'h2: y = 4'b1011;
2'h3: y = 4'b0111;
default: y = 4'b1110;
endcase
end
endmodule
module digitSplitter (
input [13:0] i_digit,
output [ 3:0] o_digit_1,
output [ 3:0] o_digit_10,
output [ 3:0] o_digit_100,
output [ 3:0] o_digit_1000
);
assign o_digit_1 = i_digit % 10;
assign o_digit_10 = i_digit / 10 % 10;
assign o_digit_100 = i_digit / 100 % 10;
assign o_digit_1000 = i_digit / 1000 % 10;
endmodule
module Mux (
input [1:0] sel,
input [3:0] x0,
input [3:0] x1,
input [3:0] x2,
input [3:0] x3,
output reg [3:0] y
);
always @(sel, x0, x1, x2, x3) begin
case (sel)
2'b00: y = x0;
2'b01: y = x1;
2'b10: y = x2;
2'b11: y = x3;
default: y = x0;
endcase
end
endmodule
module BCDtoSEG (
input [3:0] bcd,
output reg [7:0] seg
);
always @(bcd) begin // bcd 변화가 감지되면 실행
case (bcd)
4'h0: seg = 8'hc0;
4'h1: seg = 8'hf9;
4'h2: seg = 8'ha4;
4'h3: seg = 8'hb0;
4'h4: seg = 8'h99;
4'h5: seg = 8'h92;
4'h6: seg = 8'h82;
4'h7: seg = 8'hf8;
4'h8: seg = 8'h80;
4'h9: seg = 8'h90;
4'ha: seg = 8'h88;
4'hb: seg = 8'h83;
4'hc: seg = 8'hc6;
4'hd: seg = 8'ha1;
4'he: seg = 8'h86;
4'hf: seg = 8'h8e;
default: seg = 8'hff;
endcase
end
endmodule
module counter #(parameter MAX_COUNT = 4)(
input clk,
input reset,
output [$clog2(MAX_COUNT)-1:0] count
);
reg [$clog2(MAX_COUNT)-1:0] counter = 0;
assign count = counter; // wire은 assign으로 연결해야함.
always @(posedge clk, posedge reset) begin // 비동기 reset
if (reset == 1'b1) begin
counter <= 0;
end
else begin
if (counter == MAX_COUNT - 1) begin
counter <= 0;
end
else begin
counter <= counter + 1;
end
end
end
endmodule
module clkDiv #(parameter MAX_COUNT = 100)(
input clk,
input reset,
output o_clk
);
reg [$clog2(MAX_COUNT)-1:0] counter = 0; // [16:0]으로 만들어줌. $clog2 : log2()
reg r_tick = 0 ;
assign o_clk = r_tick;
always @(posedge clk, posedge reset) begin
if (reset) begin
counter <= 0;
end
else begin
if (counter == (MAX_COUNT - 1)) begin
counter <= 0;
r_tick <= 1'b1;
end
else begin
counter <= counter + 1;
r_tick <= 1'b0;
end
end
end
endmodule
schematic
constraint
video
'[하만]세미콘 아카데미 > verilog' 카테고리의 다른 글
0514 assignment, FSM, button_moore_mealy (0) | 2024.06.22 |
---|---|
0513 clock_upCounter (0) | 2024.06.22 |
0510_8bitAdder_display (0) | 2024.06.22 |
0509 4bit_Full_Adder & FND 표시 (0) | 2024.06.22 |
0508 4bit_Full_Adder (0) | 2024.06.22 |